Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.638
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625937

RESUMEN

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Humanos , Animales , Fosforilación , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Línea Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
2.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581667

RESUMEN

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Asunto(s)
Diabetes Mellitus , Insulinas , Animales , Ratones , Anoctamina-1/metabolismo , Arterias/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Receptor de Insulina/metabolismo
3.
Zoolog Sci ; 41(2): 230-243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587918

RESUMEN

The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Masculino , Animales , Drosophila melanogaster/fisiología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Alelos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila
4.
Cell Rep ; 43(4): 114007, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517889

RESUMEN

Urinary tract infections (UTIs) commonly afflict people with diabetes. To better understand the mechanisms that predispose diabetics to UTIs, we employ diabetic mouse models and altered insulin signaling to show that insulin receptor (IR) shapes UTI defenses. Our findings are validated in human biosamples. We report that diabetic mice have suppressed IR expression and are more susceptible to UTIs caused by uropathogenic Escherichia coli (UPEC). Systemic IR inhibition increases UPEC susceptibility, while IR activation reduces UTIs. Localized IR deletion in bladder urothelium promotes UTI by increasing barrier permeability and suppressing antimicrobial peptides. Mechanistically, IR deletion reduces nuclear factor κB (NF-κB)-dependent programming that co-regulates urothelial tight junction integrity and antimicrobial peptides. Exfoliated urothelial cells or urine samples from diabetic youths show suppressed expression of IR, barrier genes, and antimicrobial peptides. These observations demonstrate that urothelial insulin signaling has a role in UTI prevention and link IR to urothelial barrier maintenance and antimicrobial peptide expression.


Asunto(s)
Receptor de Insulina , Transducción de Señal , Vejiga Urinaria , Infecciones Urinarias , Urotelio , Receptor de Insulina/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/metabolismo , Infecciones Urinarias/patología , Animales , Urotelio/metabolismo , Urotelio/patología , Urotelio/microbiología , Humanos , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Ratones , Escherichia coli Uropatógena/patogenicidad , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Femenino , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Masculino
5.
Nat Commun ; 15(1): 2609, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521788

RESUMEN

Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Receptor de Insulina , Humanos , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542117

RESUMEN

Rabson-Mendenhall syndrome (RMS) is a rare autosomal recessive disorder characterized by severe insulin resistance, resulting in early-onset diabetes mellitus. We report the first case of RMS in a Paraguayan patient. The patient is a 6-year-old girl who presented with hypertrichosis, acanthosis nigricans, nephrocalcinosis, and elevated levels of glucose and insulin that served as diagnostic indicators for RMS. Genetic testing by next-generation sequencing (NGS) revealed two pathogenic variants in exons 2 and 19 of the INSR gene: c.332G>T (p.Gly111Val) and c.3485C>T (p.Ala1162Val), in combined heterozygosis. The novel INSR c. 332G>T variant leads to the substitution of glycine to valine at position 111 in the protein, and multiple in silico software programs predicted it as pathogenic. The c.3485C>T variant leads to the substitution of alanine to valine at position 1162 in the protein previously described for insulin resistance and RMS. The management of RMS is particularly challenging in children, and the use of metformin is often limited by its side effects. The patient was managed with nutritional measures due to the early age of onset. This report expands the knowledge of RMS to the Paraguayan population and adds a novel pathogenic variant to the existing literature.


Asunto(s)
Síndrome de Donohue , Resistencia a la Insulina , Niño , Femenino , Humanos , Síndrome de Donohue/diagnóstico , Resistencia a la Insulina/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Mutación , Valina/genética , Antígenos CD/genética
7.
Discov Med ; 36(181): 372-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409842

RESUMEN

BACKGROUND: Allergic asthma (AA) is a prevalent chronic airway inflammation disease. In this study, this study aims to investigate the biological functions and potential regulatory mechanisms of the insulin receptor (INSR) in the progression of AA. METHODS: BALB/c mice (n = 48) were randomly divided into the following groups: control group, AA group, AA+Lentivirus (Lv)-vector short hairpin RNA (shRNA) group, AA+Lv-vector group, AA+Lv-INSR shRNA group, and AA+Lv-INSR group. The pulmonary index was calculated. mRNA and protein expression levels of INSR, signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 (JAK2), phosphorylated-STAT3 (p-STAT3), phosphorylated-JAK2 (p-JAK2), alpha-smooth muscle actin (α-SMA), febrile neutropenia (FN), mucin 5AC (MUC5AC), and mucin 5B (MUC5B) were examined using reverse-transcription quantitative PCR (RT-qPCR) and western blot assays. Positive expressions of INSR, retinoic acid-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) were quantified by immunohistochemistry. Fluorescence intensities of α-SMA and FN were detected by immunofluorescence. Pathological morphology was observed through hematoxylin-eosin (H&E) staining, Masson staining, and Periodic Acid-Schiff (PAS) staining. Contents of immunoglobulin E (IgE), interleukin-6 (IL-6), eotaxin, interleukin-4 (IL-4), interleukin-13 (IL-13), interferon-γ (IFN-γ), interleukin-17 (IL-17), and interleukin-10 (IL-10) were quantified using enzyme-linked immunosorbent assay (ELISA). The percentage of T helper 17 (Th17) and regulatory T (Treg) cells was determined through flow cytometry. RESULTS: Compared to the control group, expression levels of INSR, p-STAT3, p-JAK2, α-SMA, FN, MUC5AC, MUC5B, RORγt, and Foxp3, as well as IgE, IL-6, eotaxin, IL-4, IL-13, and IL-17 contents, pulmonary index, glycogen-positive area (%), and Th17 cell percentage significantly increased (p < 0.05). Additionally, pulmonary histopathological deterioration and collagen deposition were aggravated, while Treg cell percentage and IFN-γ and IL-10 contents remarkably decreased (p < 0.05). The overexpression of INSR further exacerbated the progression of allergic asthma, but the down-regulation of INSR reversed the trends of the above indicators. CONCLUSIONS: The down-regulation of INSR alleviates airway hyperviscosity, inflammatory infiltration, and airway remodeling, restoring Th17/Treg immune balance in AA mice by inactivating the STAT3 pathway.


Asunto(s)
Asma , Interleucina-10 , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Regulación hacia Abajo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Asma/metabolismo , Asma/patología , Inmunoglobulina E/genética , Inmunoglobulina E/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , ARN Interferente Pequeño
8.
Sci Rep ; 14(1): 4331, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383709

RESUMEN

Insulin and insulin-like growth factor 1 (IGF-1) are metabolic hormones with known effects on CD4+ T cells through insulin receptor (IR) and IGF-1 receptor (IGF-1R) signaling. Here, we describe specific and distinct roles for these hormones and receptors. We have found that IGF-1R, but not IR, expression is increased following CD4+ T cell activation or following differentiation toward Th17 cells. Although both insulin and IGF-1 increase the metabolism of CD4+ T cells, insulin has a more potent effect. However, IGF-1 has a unique role and acts specifically on Th17 cells to increase IL-17 production and Th17 cell metabolism. Furthermore, IGF-1 decreases mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS) in Th17 cells, providing a cytoprotective effect. Interestingly, both IR and IGF-1R are required for this effect of IGF-1 on mitochondria, which suggests that the hybrid IR/IGF-1R may be required for mediating the effect of IGF-1 on mitochondrial membrane potential and mROS production.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Linfocitos T CD4-Positivos/metabolismo
9.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284547

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Asunto(s)
Proteínas de Caenorhabditis elegans , Captopril , Animales , Humanos , Ratones , Captopril/farmacología , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Longevidad/fisiología , Receptor de Insulina/metabolismo , Mutación/genética , Mamíferos/metabolismo
10.
Life Sci ; 340: 122460, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286207

RESUMEN

AIMS: Extracellular vesicles (EVs) are involved in intercellular communication and are a topic of increasing interest due to their therapeutic potential. The aim of this study was to determine whether human islet-derived EVs contain insulin, and if so, what role do they play in glucose stimulated insulin secretion. MAIN METHODS: We isolated EVs from human islets culture and plasma to probe for insulin. Plasma from hyperglycemic glucose clamp experiments were also used to isolate and measure EV insulin content in response to a secretory stimulus. We performed immunogold electron microscopy for insulin presence in EVs. Co-culture experiments of isolated EVs with fresh islets were performed to examine the effect of EV cargo on insulin receptor signaling. KEY FINDINGS: EVs isolated from culture medium contained insulin. Glucose treatment of islets increased the level of EV insulin. Hyperglycemic glucose clamp experiments in humans also lead to increased levels of insulin in plasma-derived EVs. Immunogold electron microscopy and proteinase K-digestion experiments demonstrated that insulin in EVs predominantly associated with the exterior surface of EVs while western blot analyses uncovered the presence of only preproinsulin in EVs. Membrane-bound preproinsulin in EVs was capable of activating insulin signaling pathway in an insulin receptor-dependent manner. The physiological relevance of this finding was observed in priming of human naïve islets by EVs during glucose stimulated insulin secretion. SIGNIFICANCE: Our data suggest that (1) human islets secret insulin via an alternate pathway (EV-mediated) other than conventional granule-mediated insulin secretion, and (2) EV membrane bound preproinsulin is biologically active.


Asunto(s)
Vesículas Extracelulares , Células Secretoras de Insulina , Islotes Pancreáticos , Precursores de Proteínas , Humanos , Células Secretoras de Insulina/metabolismo , Secreción de Insulina , Receptor de Insulina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Vesículas Extracelulares/metabolismo , Islotes Pancreáticos/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38267766

RESUMEN

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Antígenos CD , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Cerebelo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Corteza Auditiva/metabolismo , Precursor de Proteína beta-Amiloide/genética , Anciano de 80 o más Años , Apolipoproteínas E/genética , Expresión Génica/genética , Estudios de Casos y Controles
12.
Clin Endocrinol (Oxf) ; 100(3): 284-293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172081

RESUMEN

OBJECTIVE: Insulin receptor substract 1 (IRS1) protein is an important signal transduction adapter for extracellular signal transduction from insulin-like growth factor-1 receptor and its family members to IRS1 downstream proteins. IRS1 has been reported to be involved in tumourigenesis and metastasis in some of solid tumors. Investigating the role of IRS1 in thyroid cancer can help to screen high risk patients at the initial diagnosis. DESIGN, PATIENTS AND MEASUREMENTS: Immunohistochemical assay was used to detect the expression levels of IRS1 in 131 metastatic thyroid cancer tissues. Wound healing, cell invasion and colony formation assays were used to study the functions of IRS1 in vitro. RNA sequencing (RNA-seq) and Western blot analysis analyses were performed to examine the underlying regulation mechanisms of IRS1 in thyroid cancer cells. RESULTS: IRS1 was highly expressed in thyroid cancers and its expression was positively associated with distant metastasis and advanced clinical stages. In vitro studies demonstrated that IRS1 is an important mediator of migration, invasion and colony formation of thyroid cancer cells. RNA-seq showed that IRS1 promoted the metastasis of thyroid cancer by regulating epithelial-mesenchymal transition and phosphoinositide 3-kinase (PI3K)/AKT pathway. CONCLUSIONS: IRS1 overexpression contributes to the aggressiveness of thyroid cancer and is expected to be a stratified marker and a potential therapeutic target for thyroid cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Neoplasias de la Tiroides , Humanos , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Tiroides/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo
13.
Cancer Gene Ther ; 31(4): 599-611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272982

RESUMEN

Irregularities in insulin signaling have significantly increased the risk of various cancers, yet the precise underlying mechanisms remain unclear. Within our study, we observed that inhibiting neddylation enhances cancer cell migration across different cancer types by activating both insulin receptor substrates 1 and 2 (IRS1 and IRS2), along with the PI3K/AKT signaling pathway. Notably, in the context of high-grade serous carcinoma (HGSC) patients, whether they had type 2 diabetes mellitus or not, IRS1 and IRS2 displayed a parallel relationship with each other while exhibiting an inverse relationship with NEDD8. We also identified C-CBL as an E3 ligase responsible for neddylating IRS1 and IRS2, with clinical evidence further confirming a reciprocal relationship between C-CBL and pAKT, thereby reinforcing the tumor suppressive role of C-CBL. Altogether, these findings suggest that neddylation genuinely participates in IRS1 and IRS2-dependent insulin signaling, effectively suppressing cancer cell migration. Thus, caution is advised when considering neddylation inhibitors as a treatment option for cancer patients, particularly those presenting with insulin signaling dysregulations linked to conditions like obesity-related type 2 diabetes or hyperinsulinemia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Insulina/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias/genética , Movimiento Celular
14.
Cell Mol Life Sci ; 81(1): 25, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212570

RESUMEN

Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Ratones , Animales , Insulina/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Triptófano/metabolismo , Fosforilación , Glucosa/metabolismo
15.
J Transl Med ; 22(1): 78, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243324

RESUMEN

BACKGROUND: Inflammatory Bowel Diseases (IBD), an autoimmune disease characterised by abnormal intestinal immunity, are related to vital morbidity around the world. However, therapeutic agents for IBD have not achieved desired benefit. Exploring new therapeutic targets for IBD, especially based on its abnormally intestinal immunity, could alleviate the flare-up and worsening of IBD. Tissue resident memory T cells (TRM) are core of multiple autoimmune diseases, including IBD. However, the mechanism of TRM differentiation remains to be investigated. METHODS: The alterations in mRNA and lncRNA profile of intestinal intraepithelial lymphocytes (IELs), the largest component of intestinal TRM, were analyzed in DSS-induced chronic colitis. Based on it, we examined the function of rectal insulin instillation in a dextran sodium sulfate (DSS) induced chronic colitis. Furthermore, we investigated the downstream-target of the insulin pathway-EZH2 and the crucial role of EZH2 in intestinal tissue resident memory T cell differentiation by utilizing EZH2fl/flCD4cre mice. RESULTS: Insulin receptor (INSR) expression was found to be significantly reduced. Activation of mucosal insulin pathway by rectal insulin instillation exacerbated colitis by disrupting IELs subgroups and up-regulating TNF-ɑ and IL-17 expression. Rectal insulin instillation promoted EZH2 expression and EZH2 inhibition alleviated chronic colitis. EZH2fl/flCD4cre mice restored the normal IEL subgroups and suppressed TNF-ɑ and IL-17 expression, exhibiting alleviated colitis. IELs from EZH2fl/flCD4cre mice exhibit significant changes in TRM related phenotype. CD4+TRM was significantly increased in chronic colitis and decreased in EZH2fl/flCD4cre mice. CONCLUSION: Insulin receptor of intestinal mucosal T-cells could promote intestinal TRM differentiation via EZH2. Our discoveries suggest that therapies targeting colonic INSR and EZH2 could be potential treatment for IBD based on its regulatory effects on TRM. Insulin receptor inhibitors rather than insulin should be applied during colitis-active phase. In addition, EZH2 shows to be a downstream signal of the insulin pathway and EZH2 inhibitor could alleviating intestinal inflammation. However, the critical role of EZH2 in TRM differentiation restricts the anti-tumor effects of EZH2 inhibitor in vivo.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Insulinas , Ratones , Animales , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor de Insulina/efectos adversos , Receptor de Insulina/metabolismo , Células T de Memoria , Colitis/inducido químicamente , Diferenciación Celular , Mucosa Intestinal/patología , Inflamación/patología , Insulinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
16.
Nutrition ; 120: 112333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271759

RESUMEN

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Asunto(s)
Resistencia a la Insulina , Neuropéptidos , Ratas , Animales , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteína Relacionada con Agouti/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Leptina/genética , ADN Metiltransferasa 3A , Ratas Sprague-Dawley , Obesidad/genética , Obesidad/metabolismo , Hiperfagia/complicaciones , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Superóxido Dismutasa/metabolismo , Angiotensinas/metabolismo
17.
Mol Nutr Food Res ; 68(1): e2300283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888838

RESUMEN

SCOPE: Propolis has been found to decrease glucose levels and increase insulin sensitivity in type 2 diabetes. However, the active ingredient responsible for these effects and its regulating mechanism are not fully understood. METHODS AND RESULTS: To address this, molecular docking screening is used to screen the effective hypoglycemic ingredient in propolis and found that tectochrysin (TEC) has a high affinity to the insulin receptor (IR), highlighting its potential for glycemic control. In vivo tests show that TEC decreases glucose levels and enhances insulin sensitivity in db/db mice. By hyperinsulinemic euglycemic clamp test, this study further finds that TEC promotes glucose uptake in adipose tissue and skeletal muscle, as well as inhibits hepatic gluconeogenesis. Moreover, it finds that TEC promotes glucose uptake and adipocytes differentiation in 3T3-L1 cells like insulin, suggesting that TEC exerts an insulin mimetic effect. Mechanistically, pharmacology inhibition of IRß abolishes the effects of TEC on glucose uptake and the phosphorylation of IR. The study further demonstrates that TEC binds to and activates IRß by targeting its E1077 and M1079. CONCLUSION: Therefore, this study sheds light on the mechanism underlying propolis' potential for ameliorating type 2 diabetes, offering a natural food-derived compound as a promising therapeutic option.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Própolis , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor de Insulina/metabolismo , Própolis/farmacología , Simulación del Acoplamiento Molecular , Insulina/metabolismo , Glucosa/metabolismo , Células 3T3-L1
18.
EBioMedicine ; 99: 104906, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061240

RESUMEN

BACKGROUND: In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS: Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS: Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3ß, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION: Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING: Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Ratones , Animales , Insulina/metabolismo , Resistencia a la Insulina/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Noqueados , Canadá , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo
19.
Exp Cell Res ; 434(1): 113862, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036052

RESUMEN

Breast cancer is the most common cancer in women. The upregulation of insulin-like growth factor (IGF) system observed in certain types of breast cancers was linked to growth, metastasis, and survival resulting in multiple strategies designed to target the type I IGF receptor (IGF-1R) in breast cancer. These attempts failed to prove beneficial and it has been suggested that insulin receptor (IR) could also play an important role in breast cancer biology. To better understand the IR's role in breast cancer cells, the receptor was deleted from MCF-7L cells using CRISPR technology, and fluorescence-assisted cell sorting was used to obtain clone 35 (CL35). It was found that CL35 activated signaling pathways upon insulin stimulation despite the absence of IR expression. We hypothesized that CL35 used a surrogate receptor for sustained growth and development. IGF-1R was able to activate insulin signaling and growth in CL35. Thus, insulin may play a central role in regulating breast cancer growth due to its ability to activate all the receptors of the IGF family. These findings argue that dual targeting of IR and IGF-IR may be required to inhibit breast cancer growth.


Asunto(s)
Neoplasias de la Mama , Receptor de Insulina , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genética
20.
Pest Manag Sci ; 80(2): 648-660, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37756442

RESUMEN

BACKGROUND: Insulin signalling pathways play crucial roles in regulating growth and development in insects, but their effects on the growth and development of Arachnids, such as spiders, have rarely been studied. As a valuable pest natural enemy in agricultural fields, the molecular mechanisms of insulin signalling pathway-mediated growth and development of the wolf spider, Pardosa pseudoannulata, are of particular interest. RESULTS: In this study, we identified and characterized six insulin signalling pathway genes - InR, InR2, IRS1, PI3K1, PI3K2, and PDK - in Pardosa pseudoannulata. Real-time quantitative polymerase chain reaction results were used to analyse the relative expression levels of the six genes in different developmental instars and tissues, and in response to starvation treatment. In addition, the function of the insulin receptor substrate (IRS1) gene was investigated using RNA interference technology, which found that IRS1 significantly influenced nutrient content, developmental duration, body weight, and gonad development. CONCLUSION: This study revealed the roles of six key insulin signalling pathway genes in Pardosa pseudoannulata, and in particular the importance of the IRS1 gene in regulating growth and development in the spider. The results lay the foundation for further research on the internal regulation mechanisms of growth and development in Araneae species, and also provide a reference for the artificial breeding of spiders. © 2023 Society of Chemical Industry.


Asunto(s)
Animales Venenosos , Insulinas , Arañas , Animales , Interferencia de ARN , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/farmacología , Arañas/genética , Crecimiento y Desarrollo , Insulinas/genética , Insulinas/metabolismo , Insulinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...